

A cozinha é um laboratório Do grão ao pão

O pão é um alimento que resulta do cozimento de massa feita com farinha de cereais (principalmente trigo, centeio e milho), água, sal e fermento. pão? química do pão

PENSAREFAZER

História do pão

Quando estamos a comer um pão raramente nos lembramos que é um produto essencial à nossa alimentação que acompanhou quase toda a evolução do ser humano.

A história do homem, desde o período neolítico até aos nossos dias, tem inúmeras referências à sua estreita relação com o pão.

A preparação do pão iniciou-se quando se começaram a cultivar os cereais, cerca de sete mil anos a.C., na Ásia. Nesta altura era produzido pão ázimo (pão confeccionado sem a adição de fermento).

O pão fermentado começou a ser produzido mais tarde (oitocentos anos a.C.) no Egipto. Os Egípcios adicionavam líquido fermentado à massa do pão para a tornar leve e macia. Foram estes os primeiros a cozer pão em fornos. Até essa altura, o pão era confeccionado secando a massa ao sol ou então, cozendo-a sobre pedras quentes ou sob cinza.

No Egipto, o pão era confeccionado de cevada ou espécies de trigo de qualidade inferior e era amassado com os pés. Os pães preparados com trigo de qualidade superior eram destinados apenas aos ricos. No Egipto, era também utilizado para pagar salários: um dia de trabalho valia três pães e dois cântaros de cerveja.

Nessa época, os Judeus também fabricavam pão, mas não utilizavam fermento porque acreditavam que a **fermentação** era uma forma de putrefacção e impureza.

Os Gregos aprenderam a fabricar **pão levedado** com os Egípcios mas, rapidamente, introduziram modificações na composição. Passaram a juntar gordura, leite ou queijo à receita original dos Egípcios. O processo de fabrico, nessa altura, efectuava-se de forma similar aos dias de hoje. Foram os Gregos que introduziram o pão na Europa.

Os Romanos foram grandes consumidores de pão. O pão romano era feito em casa tendo passado, posteriormente, a ser fabricado em padarias públicas.

Os Egípcios, Gregos e Romanos ofereciam animais, flores e massa de pão aos Deuses e aos mortos.

Com a queda do Império Romano e da organização por ele imposta ao mundo, as padarias europeias desapareceram, e a maior parte da Europa voltou a fabricar o pão em casa. Por razões de comodidade voltou a ser produzido pão ázimo e achatado. Este alimento servia de acompanhamento a outros alimentos (carne e sopas). Nessa época, apenas os castelos e conventos possuíam padarias. Os métodos de fabrico de pães eram muito rudimentares mas apesar das limitações na produção, as corporações de padeiros já tinham alguma força.

No século XVII, com a introdução dos processos inovadores de panificação, a França, tornou-se o centro de fabrico de pães de luxo. No entanto, nesse país, desde o século XII já era habitual o consumo de mais de vinte variedades de pães. Depois, o centro de excelência do fabrico de pão passou a ser em Viena, Áustria.

A invenção de novos processos de moagem dos grãos de cereais para produção de farinha, contribuiu muito para a indústria panificadora.

Os grãos de trigo, inicialmente, eram triturados em moinhos de pedra manuais. Estes evoluíram para moinhos de pedra movidos por animais e depois para os movidos por água e, finalmente, pelos moinhos de vento. Apenas em 1784 apareceram os moinhos movidos a vapor. Em 1881 ocorre a invenção dos cilindros, que muito incrementou a produção de pães.

Recentemente, juntamente com a adaptação de novas técnicas de panificação, desenvolveram-se processos de cozedura mais avançados e estudou-se a combinação de uma série de novos ingredientes, para tornar o produto final mais adequado às exigências gastronómicas e às necessidades de uma dieta mais de acordo com os padrões actuais.

Bernard Dupaigne (1999) History of bread, Harry N. Abrams; Jerome Assire (1996) The book of bread, Flammarion.

Para fazer pão

Ingredientes

100g farinha de trigo 60ml água morna (40-45°C) 3g fermento de padeiro Sal

Procedimento a seguir

- 1º Juntar farinha, água morna e fermento de padeiro dissolvido em água morna;
- 2º Amassar;
- 3º Ir juntando água até se obter a consistência pretendida;
- 4º Amassar (5 min);
- 5º Repetir o processo para preparação de massa sem fermento;
- 6º Deixar **levedar**;
- 7º Passados 15 minutos, comparar com a massa sem fermento (testemunha) (15 min);
- 8º Fazer bolinhas de massa levedada;
- 9º Colocar as bolinhas de massa no forno ou microondas.

A química

Da espiga ao grão de cereal

Os cereais são semeados no início de Novembro em campos previamente lavrados. Neste período, o calor da terra é suficiente para fazer inchar a semente e para fazer que do seu interior saia uma pequena raiz. Logo depois, comecam a aparecer pequenas folhas verdes que cobrem toda a superfície do campo. Com a chegada dos primeiros frios, estas pequenas folhinhas param de crescer mas o gelo não as estraga, pelo contrário, protege as pequenas plantas dos rigores do Inverno. Mais tarde, com a chegada da Primavera, as pequeninas plantas recomeçam a crescer e, nos caules, surgem as primeiras espigas. A estas espigas dá-se o nome de florescências, o que significa que, cada pequena espiga é composta de muitas e pequeninas flores. Mas, estas flores são um pouco diferentes, não têm corola, nem néctar, nem pétalas e nem sequer perfume. Aos poucos as flores vão sendo substituídas por pequenos frutos

As espigas de cereais estão prontas para serem cortadas em Julho/Agosto. A apanha dessas espigas chama-se ceifa. As espigas secas têm de ser separadas do grão de cereal. Este processo chama-se malha. Com este processo o grão de trigo é pequeno, de forma oval, com uma fenda no sentido do comprimento e é revestido por uma casca dura. No seu interior encontra-se o **amido** (moléculas de amilose e amilopectina) as **proteínas** e os **lípidos**. Estas substâncias são muito nutritivas e, para além de serem preciosas para o homem, conferem a força necessária para a planta crescer.

Do grão à farinha

A farinha é obtida após a moagem de cereais. Os seus constituintes maioritários são, portanto, os mesmos dos cereais: amido, proteínas, lípidos e açúcares livres.

Quando os cereais são moídos, a primeira farinha que se obtém, não é a directamente usada para fazer pão. Primeiro tem de ser peneirada! Este processo separa por tamanhos os constituintes da casca (mais grossos), dos constituintes mais internos do grão (mais finos). A farinha, dependendo da finalidade para a qual vai ser utilizada, é feita passar por diferentes tipos de peneiros. Os peneiros têm malha diferente: mais ou menos apertada. Os de malha mais larga deixam passar partículas mais grossas e a farinha obtida tem maior quantidade de partículas da casca. Esta farinha é mais escura. Os peneiros de malha mais apertada deixam passar apenas partículas mais finas de farinha. A farinha assim obtida tem poucas ou nenhumas partículas de casca (é mais branca).

À fracção da farinha constituída pela casca do grão damos o nome de farelo.

A farinha usada para fazer o pão integral é menos peneirada, tem maior quantidade dos constituintes da casca do cereal. Para fazer o pão mais branco ou para fazer bolos, é usada uma farinha mais peneirada (mais clara, com menos casca de cereais).

Porque é que se amassa a massa?

As proteínas da farinha estão enroladas de forma bastante desarrumada. Quando a farinha é misturada com água e é em seguida amassada, as proteínas vão sendo progressivamente alinhadas, formando o

glúten. Com o processo de amassar a farinha com água, as proteínas vão ficando cada vez mais alinhadas e mais próximas e o **glúten** torna-se mais forte e mais elástico. Desta forma consegue prender o dióxido de carbono (CO2) formado pelas **leveduras**.

Porque é que o glúten é tão importante?

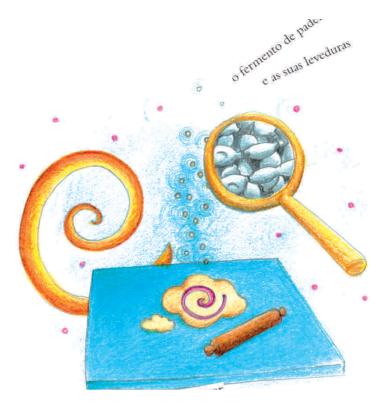
Sem ele não haveria nada que prendesse o gás (dióxido de carbono) formado na fermentação do pão. É este gás que faz o pão crescer. Quando se fazem bolos a formação de glúten não é desejável!

Porque é que o pão tem buracos?

Quando o pão é cozido as proteínas do glúten **desnaturam** e no lugar do dióxido de carbono ficam os **alvéolos** do pão.

O que é o fermento de padeiro?

O fermento de padeiro serve para levedar a massa. É constituído por células de levedura. 1g de fermento de padeiro tem aproximadamente 25 biliões de células! As leveduras, em **condições anaeróbias**, consomem os açúcares livres das farinhas e podem usar as próprias **enzimas** para clivar açúcares mais complexos. A partir dos açúcares produzem dióxido de carbono e **etanol**. A temperatura a que ocorre esta reacção é muito importante. Se a temperatura for demasiado elevada, as leveduras morrem. Se a temperatura é demasiado baixa, a transformação dos açúcares é demasiado lenta. Quando a massa é cozida as leveduras são mortas, as bolhas de dióxido de carbono são retidas na matriz proteica (glúten) desnaturada por acção da tempe-ratura, formando os alvéolos. O **etanol** é evaporado.

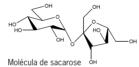

A temperatura da água é muito importante:

55-60°C as leveduras morrem:

45-55°C as leveduras estão activas prontas para serem misturadas com os ingredientes da receita;

41-45°C a temperatura ideal para suspender levedura para actuar sobre acúcar;


38°C a **glutationa** liberta-se das paredes celulares tornando a massa mais pegajosa e mais difícil de manusear;



Formação de ligações S-S entre proteínas de farinha para formação de glúten

Molécula de proteína

Amido (amilose+amilopectina)

0400H 0410H 0410H

Molécula de amilose Amido (amilose+amilopectina)

35°C temperatura usada para suspender leveduras compactas:

27-32°C temperatura óptima para as leveduras crescerem e se reproduzirem quando a massa está a levedar.

De onde vem o fermento de padeiro?

Existem empresas que as cultivam e comercializam a Saccharomyces cerevisiae em barras. No entanto, as leveduras usadas na panificação podem ainda ser provenientes da indústria de cerveja.

A Saccharomyces cerevisiae também é responsável pela fermentação da cerveja. Quando a fermentação da cerveja termina as células de levedura depositamse na parte inferior dos tanques de fermentação e quando a cerveja é retirada fica um resíduo de leveduras que continua activo e pode (e é!) utilizado para fermentar o pão.

Quando o pão é cozido...

No forno acontecem várias reacções. Já foi dito que todo o etanol é evaporado, as leveduras morrem e o dióxido de carbono fica retido nos alvéolos devido à desnaturação das proteínas do glúten. A formação da côdea deve-se a compostos resultantes de **reacções de Caramelização** e **reacções de Maillard**.

Experiências

Posso ver o glúten?

Ingredientes 100g farinha de trigo 60ml água

Procedimento a seguir

- 1º Juntar água à farinha;
- 2º Amassar:
- 3º Ir juntando água até se obter a consistência pretendida:
- 4º Amassar (5 min);
- 5º Depois de a massa estar bem amassada lava-se debaixo da torneira com um fio de água. Massaja-se a massa para ir saindo o amido e os compostos minoritários da farinha. No final fica-se com a rede tridimensional proteica que constitui o glúten (aspecto de pastilha elástica).

Como funciona o fermento de padeiro?

Ingredientes Fermento de padeiro Água morna (40/45°C) 2 colheres de sopa de açúcar 1 garrafa pequena de vidro

Procedimento a seguir

- 1º Colocar na garrafa:
 fermento de padeiro; água morna (40-45°C);
 2 colheres de sopa de açúcar; colocar o balão (preparado previamente) a tapar o gargalo;
- 2º Agitar o frasco
- 3º Esperar até encher o balão (pode imaginar-se que o balão é o glúten).

Curiosidade

A história da sanduíche

O 4º Conde de Sandwittch, ainda no século XVIII, em vez de enfrentar a preguiça de um jantar formal, ordenou o seu criado que fizesse "qualquer coisa" simples e rápida. Ele queria matar a fome sem abandonar o que estava a fazer – dizem que jogava cartas. Quase em pânico, o criado apanhou duas fatias de pão e enfiou entre elas um naco de presunto. O Conde nunca mais jantou – só comeu sanduíches.

De lá para cá, as pessoas ficaram muito mais ocupadas que o nobre inglês e a invenção do criado tornou-se uma mania universal.

Atraente devido ao seu visual simples, o sanduíche viu passar dois séculos, incorporando à sua fórmula básica tudo o que se possa imaginar de comestível.

Glossário

Alvéolos pequenas cavidades que se encontram no miolo do pão.

Amido polímero natural de unidades de açúcares simples.

Condições anaeróbias ausência de oxigénio.

Desnaturação alteração da estrutura das proteínas.

Enzimas molécula (proteína) de origem biológica, produzida por células vivas, que tem a capacidade de aumentar a velocidade de uma reacção bioquímica específica, actua como catalisador orgânico.

Etanol designação científica do álcool.

Fermentação transformação química, que neste caso ocorre através de micro-organismos, promove transformação de açúcares em etanol e dióxido de carbono.

Glutationa é um composto que promove ligações S-S entre proteínas da farinha, necessárias para formação da rede do glúten.

Glúten é uma rede tridimensional formada por dois tipos de proteínas da farinha de trigo (gliadinas e glutelinas) que estabelecem ligações S-S. Nos restaurantes vegetarianos utilizam o glúten como fonte de proteína, depois de aromatizado é comercializado com o nome de satã.

Levedar introduzir ar na massa, neste caso por acção de microorganismos. Significa tornar a massa leve!

Leveduras microrganismos unicelulares da família do fungos.

Lípidos macromoléculas formadas por carbono, oxigénio e hidrogénio. Não se misturam com a água. No teu organismo, têm como principal função o armazenamento de energia.

Pão levedado pão confeccionado com fermento.

Proteína macromoléculas mais abundantes das tuas células, é constituída por aminoácidos unidos por ligações peptídicas.

Reacções de Caramelização ocorrem entre moléculas de açúcar. Estas reacções dão origem a compostos muito importantes para o sabor e o cheiro dos alimentos cozinhados.

Reacções de Maillard também designadas por reacções de escurecimento não enzimático, ocorrem entre moléculas de proteína e de açúcar. Estas reacções dão origem a compostos muito importantes para o sabor e o cheiro dos alimentos cozinhados.